Improvement of Korea Meteorological Administration Solar Energy Resources Map Using Fine-Scale Terrain Data

Author:

Yun Jinah,Kim Jinwon,Choi Minwoo,Choi Hee-Wook,Kim Yeon-Hee,Lee Sang-SamORCID

Abstract

AbstractReal-time solar energy resources mapping is crucial for the development and management of solar power facilities. This study analyzes the effects of the digital elevation model (DEM) resolution on the accuracy of the surface insolation (insolation hereafter) calculated by the Korea Meteorological Administration solar energy mapping system, KMAP-Solar, using two DEMs of different resolutions, 1.5 km and 100 m. It is found that KMAP-Solar yields smaller land-mean insolation with the fine-scale DEM than the coarse-scale DEM. The fine-scale DEM reduces biases by as much as 32 Wm− 2 for all observation sites, especially those in complex terrain and that the insolation error reduction is correlated with the difference in sky view factor (SVF) between the coarse- and fine-scale DEM. Both the coarse- and fine-scale DEMs generate the insolation-elevation and insolation-SVF relationship which is characterized by positive (negative) correlation between the insolation and the terrain altitude (SVF). However, the coarse-scale DEM substantially underestimates these relationships compared to the fine-scale DEM, mainly because the coarse-scale DEM underrepresents large terrain slopes and/or small SVFs, most seriously in high-altitude regions. The fine-scale DEM generates a more realistic insolation distribution than the coarse-scale DEM by incorporating a wider range of key terrain parameters involved in determining insolation. Improvements of insolation calculations in KMAP-Solar using a fine-scale DEM, especially in the areas of complex terrain, is of a practical value for Korea because the operational solar resources map from KMAP-Solar supports solar energy research, solar power plant installations, and real-time prediction and management of solar power within the power grid.

Funder

Korea Meteorological Administration

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference45 articles.

1. Arnold, N.S., Rees, W.G., Hodson, A.J., Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Geophys. Res. Earth Sur 111, 1–15 (2006)

2. Blane, P., Wald, L.: On the effective solar zenith h and azimuth angles to use with measurements of hourly irradiation. Adv. Sci. Technol. Res. J 13, 1–6 (2016)

3. Choi, M., Kim, Y.-H., Choi, H.-W., Lee, S., Lee, S.: Analysis of ultra-high-resolution solar meteorological radiation resource considering detailed topographic effect. 2020 KSES Spring Annual Conference 120–120 (2020)

4. Dozier, J., Frew, J.: Rapid calculation of terrain parameters for radiation modeling from digital elevation data. Clim. Change Res 1, 147–161 (1990)

5. Dubayah, R.C.: Modeling a solar radiation topoclimatology for the Rio Grande River Basin. J. Veg. Sci 5, 627–640 (1994)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3