1. Acevedo, O.C., Fitzjarrald, D.R.: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci. 58, 2650–2667 (2001). https://doi.org/10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2
2. Banks, R.F., Tiana-Alsina, J., Rocadenbosch, F., Baldasano, J.M.: Performance evaluation of the boundary-layer height from lidar and the weather research and forecasting model at an urban coastal site in the north-East Iberian Peninsula. Bound.-Layer Meteorol. 157, 265–292 (2015). https://doi.org/10.1007/s10546-015-0056-2
3. Barlow, J.F.: Progress in observing and modelling the urban boundary layer. Urban Clim. 10, 216–240 (2014). https://doi.org/10.1016/j.uclim.2014.03.011
4. Bell, B., Hersbach, H., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz Sabater, J., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., Thépaut, J-N.: ERA5 hourly data on single levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S) Climate Data Store (CDS) (2020). (Accessed on 21 Oct 2020), https://cds.climate.copernicus-climate.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-preliminary-back-extension?tab=overview.
5. Caicedo, V., Rappengluck, B., Lefer, B., Morris, G., Toledo, D., Delgado, R.: Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech. 10, 1609–1622 (2017). https://doi.org/10.5194/amt-10-1609-2017