Hadley Circulation in the Present and Future Climate Simulations of the K-ACE Model

Author:

Hur Ije,Kim Minju,Kwak Kyungmin,Sung Hyun Min,Byun Young-Hwa,Song Hajoon,Yoo ChanghyunORCID

Abstract

AbstractHadley circulation (HC) is a planetary-scale overturning circulation in the tropics that transports momentum, heat, and moisture poleward. In this study, we evaluate the strength and extent of the HC in the historical and future climate simulations of the Korean Meteorological Administration (KMA) Advanced Community Earth system model (K-ACE), which was recently developed by the National Institute of Meteorological Sciences of Korea. Compared with a reanalysis product, the overall structure of the HC is reasonably reproduced by the K-ACE. At the same time, it is also found that the Northern Hemisphere HC in the K-ACE is shifted southward by a few degrees, while the strength of the Southern Hemisphere (SH) HC is under-represented by approximately 20%. These biases in the strength and extent of the HC can be explained by biases in the eddy momentum flux and precipitation in the tropics. In the future climate simulations under the Shared Socioeconomic Pathway 5-Representative Concentration Pathway 8.5 scenario, the HCs in the K-ACE show a weakening and widening trend in both hemispheres, which is consistent with the projections of many Coupled Model Intercomparison Project Phase 6 models. A notable feature of the K-ACE is the widening of the SH HC, which takes place at a rate that is about double the multi-model mean. Climate models that share the component models with the K-ACE, such as UKESM, HadGEM3-GC31-LL, and ACCESS-CM2/ESM1, also show enhanced poleward expansion of the HC in the SH. This strong expansion is shown to be dominated by the expansion of the regional HC over the Pacific.

Funder

National Research Foundation

Korea Meteorological Administration

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3