Impacts of Changes in Soil Moisture on Urban Heat Islands and Urban Breeze Circulations: Idealized Ensemble Simulations

Author:

Tabassum Abeda,Hong Seong-Ho,Park Kyeongjoo,Baik Jong-JinORCID

Abstract

AbstractSoil moisture plays important roles in land surface and hydrological processes, and its changes can greatly affect weather and climate. In this study, we examine how changes in soil moisture impact the urban heat island (UHI) and urban breeze circulation (UBC) through idealized ensemble simulations. As soil moisture increases, the latent heat flux increases considerably in the rural area. Hence, in the rural area, the sensible heat flux and surface temperature decrease, which decreases the rural air temperature. The decrease in rural air temperature leads to increases in UHI intensity and thus UBC intensity. The urban air temperature also decreases with increasing soil moisture since the cooler rural air is advected to the urban area by the enhanced low-level convergent flow of the UBC. However, the decrease in air temperature is smaller in the urban area than in the rural area. As the UBC intensity increases, the sensible heat flux in the urban area increases. The increase in sensible heat flux in the urban area further increases the UHI intensity. The positive feedback between the UHI intensity and the UBC intensity is revealed when soil moisture increases. The decrease in air temperature in both the urban and rural areas leads to the decrease in planetary boundary layer (PBL) height. As a result, the vertical size of the UBC decreases with increasing soil moisture. As the UBC intensity increases with increasing soil moisture, the advection of water vapor from the rural area to the urban area increases. Combined with the decrease in PBL height, this reduces the water vapor deficit or even leads to the water vapor excess in the urban area depending on soil moisture content.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3