Minimal machines: augmented reality for filament-construction of partially ordered systems in architecture

Author:

Bonavia Elaine,Farmer Jessica,Mballa-Ekobena Alexandre,Rosenthal Nikolai,Douny Laurence,Dierichs KarolaORCID

Abstract

AbstractWearable augmented reality-supported technology allows for tracking and informing the interrelation of craftspeople with the architectural structure they are working on. Especially when dealing with partially ordered rather than fully ordered material systems, this feedback is relevant since toolpaths cannot be established a priori but rather evolve during the architectural construction process itself. On the one hand, partially ordered material systems have the potential of adapting to conditions both internal and external to the structure. On the other hand, they can be considered as structures that are constantly evolving: instead of demolishing a building, it could be continuously repaired. While a large range of investigations involve robots equipped with sensory feedback to address this topic, only few studies have attempted to equip humans with a minimal amount of technology so as to harness human sensory intelligence, merely enhancing it with technology. This article introduces the current state of the field of augmented reality and partially ordered systems in architectural construction with a focus on filament-laying processes. Then, it presents a newly developed framework for augmented construction with designed filaments for partially ordered fabrics in architecture, encompassing both the wearable hardware and the custom-developed software. The principles of systems in human-made filament-based architecture are introduced and set in relation to similar role model systems in animal-made architecture. Then, three experiments of increasing complexity investigate the human-to-machine, the machine-to-human and the machine-to-human-to-machine communication. A final integrative demonstrator serves to investigate the framework for augmented reality in construction on a full architectural scale. As an outlook, areas of further research—such as the integration of artificial intelligence into the feedback loop—are discussed.

Funder

Deutsche Forschungsgemeinschaft

Max Planck Institute for Colloids and Interfaces (MPIKG)

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3