The impact of laser surface treatment on the microstructure, wear resistance and hardness of the AlMg5 aluminum alloy

Author:

Pakieła WojciechORCID,Tanski Tomasz,Brytan Zbigniew,Chladek Grzegorz,Pakieła Katarzyna

Abstract

AbstractLight metal alloys due to several unique properties such as low density and high corrosion resistance are increasingly used in various technical applications, where the automotive industry is one of the most important sectors. The automotive applications use mostly aluminum alloys, where the strength to density ratio of the material plays a crucial factor. Unfortunately, relatively low mechanical properties limit their applications for parts where a high surface hardness and wear resistance is expected. The classic heat treatment of aluminum alloys can only in some limited ranges improve the bulk material properties. Despite this, surface treatment with laser processing has developed significantly over the past 20 years. The laser beam treatment allows the introduction of a wide range of alloying elements to the surface layer of an aluminum alloy and thus, as a result of the precipitation of numerous intermetallic phases, significantly increases hardness, and abrasion resistance. The purpose of this work was to modify the aluminum surface layer using high-power fiber laser (HPFL). During this process, a mixture of titanium and iron powders (90/10 wt.%) was introduced onto the surface of the AlMg5 alloy. The microhardness tests carried out by the Vickers method and tribological tests showed a significant increase in mechanical properties in the entire volume of the obtained layer. Research on light and scanning microscopy revealed fragmentation of primary precipitates and the formation of numerous intermetallic phases rich in titanium and aluminum.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3