The influence of the physicochemical processes on the electrical response of Al/p-Si structure with etched surface

Author:

Badali Yosef,Azizian-Kalandaragh Yashar

Abstract

AbstractIn this paper, the electrochemical etching process is used for surface modification of the p-Si wafer, named as porous silicon (PS), in the metal–semiconductor (MS) type Schottky diode (SD) with a structure of Al/p-Si. Five regions of PS wafer with different etching rates are selected for comparison of them which are called P2, P3, P4, and P5 (P1 is the reference area without porosity). The morphological, structural, and electrical properties of the PS used in the MS-type SD are investigated using field-emission scanning electron microscope (FE-SEM) images, energy dispersive X-ray (EDX) analysis, and current–voltage (I–V) characteristics, respectively. The FE-SEM images show a meaningful effect on the porosity. The EDX spectrum demonstrates the importance of the chemical effects in addition to the physical changes in the porosity process of the p-Si wafer. The reverse-saturation current (I0), ideality factor (n), barrier height at zero-bias (ΦB0), and series/shunt electrical resistances are also computed and compared. Some of these parameters (n, Rs, BH) are determined using different methods, namely Thermionic emission (TE), Cheung functions, and modified Norde, and they exhibit strong agreement with each other. The energy-dependent profiles of surface states (Nss) are estimated from the I–V data by considering the voltage dependence of ΦB (V) and n(V). All the experimental findings indicate that the etching process of the p-Si wafer significantly influences the electrical performance of the Al/p-Si Schottky diode by increasing the extent of etching.

Funder

Istanbul Commerce University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3