RETRACTED ARTICLE: Atom-vacancy hopping in ultra-high vacuum at room temperature in SrTiO3 (001)

Author:

Atif RasheedORCID

Abstract

Abstract The diffusion at atomic scale is of considerable interest as one of the critical processes in growth and evaporation as well as a probe of the forces at an atomically flat reconstructed surface. This atomic-scale migration is critical to investigate in strontium titanate (SrTiO3) as it possesses the same status in oxide electronics as does silicon in ordinary electronics based on elemental semiconductors. Here we show that (001) terminated SrTiO3 reconstructed surface is atomically unstable enough to allow atom-vacancy hopping at room temperature. In this work, SrTiO3 (001) single crystal (7 × 2 × 0.5 mm) was sputtered (0.5 keV, 2.5 µA, 10 min) and annealed multiple times in ultra-high vacuum (UHV) and imaged using scanning tunneling microscope (STM). A relatively unstable surface was observed at low-temperature annealing and tip–surface interactions caused dislocation of mass at the surface. Both square and zig-zag nanolines were observed with atomic resolution where an atom-vacancy hopping was observed in a square diline while imaging at room temperature. The hopping was ceased when sample was annealed at higher temperature and a more compact network of nanolines was achieved. Graphic abstract

Funder

Oxford Research Fund

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3