Influence of a thin amorphous surface layer on de-channeling during aluminum implantation at different temperatures into 4H-SiC

Author:

Linnarsson M. K.,Hallén A.,Vines L.

Abstract

AbstractIon implantation is an important technique in semiconductor processing and has become a key technology for 4H-SiC devices. Today, aluminum (Al) implantations are routinely used for p-type contacts, p+-emitters, terminations and many other applications. However, in all crystalline materials, quite a few ions find a path along a crystal channel, so-called channeling, and these ions travel deep into the crystal. This paper reports on the channeling phenomenon during Al implantation into 4H-SiC, and in particular, the influence of a thin native oxide will be discussed in detail. The effects of thermal lattice vibrations for implantations performed at elevated temperatures will also be elucidated. 100 keV Al ions have been implanted along the [000-1] direction employing samples with 4° miscut. Before implantation, the samples have been aligned using the blocking pattern of backscattered protons. Secondary ion mass spectrometry has been used to record the Al depth distribution. To predict implantation profiles and improve understanding of the role of crystal structure, simulations were performed using the Monte-Carlo binary collision approximation code SIIMPL. Our results show that a thin surface layer of native oxide, less than 1 nm, has a decisive role for de-channeling of aligned implantations. Further, as expected, for implantations at elevated temperatures, a larger degree of de-channeling from major axes is present due to increased thermal vibrations and the penetration depth of channeled aluminum ions is reduced. The values for the mean-square atomic displacements at elevated temperatures have been extracted from experimental depth profiles in combination with simulations.

Funder

Vetenskapsrådet

Stiftelsen för Strategisk Forskning

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Reference28 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3