Multipitched plasmonic nanoparticle grating for broadband light enhancement in white light-emitting organic diodes

Author:

Auer-Berger Manuel,Tretnak Veronika,Sommer Christian,Wenzl Franz-Peter,Krenn Joachim R.,List-Kratochvil Emil J. W.

Abstract

AbstractWe apply regular arrays of plasmonic nanodisks to enhance light emission from an organic white light-emitting diode (WOLED). To achieve broadband enhancement, we apply, first, aluminum as a nanodisk material with moderate loss throughout the whole visible spectral range. Second, broadband light coupling is mediated by surface lattice resonances from a multipitch array built from two superimposed gratings with different grating constants formed by elliptic and circular nanodisks. To demonstrate the viability of this concept, the grating structure was embedded in the hole transport layer of a solution-processed phosphorescent WOLED exhibiting a current efficiency of 2.1 cd/A at 1000 cd/m2. The surface lattice resonances in the grating raise the current efficiency of the device by 23% to 2.6 cd/A at 1000 cd/m2, while the device emission changes from a neutral white to a warm white appearance with CIE1931 (x,y) coordinates of (0.361, 0.352) and (0.404, 0.351), respectively. The WOLED was characterized in detail optically by extinction and angle-resolved photoluminescence and as well by electroluminescence measurements for its opto-electronic characteristics. The experimental results agree well with finite-difference time domain simulations that aim at a better understanding of the underlying physical mechanisms. In summary, our work presents a novel versatile approach for achieving broadband enhancement of light emission in WOLEDs over a wide spectral range.

Funder

FFG

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3