Synthesis and characterization of mixed ternary transition metal ferrite nanoparticles comprising cobalt, copper and binary cobalt–copper for high-performance supercapacitor applications

Author:

Al Kiey Sherief A.ORCID,Ramadan Rania,El-Masry Mai M.

Abstract

AbstractMetal ferrites have outstanding electrochemical characteristics owing to the numerous oxidation states of the metal ions, making them promising materials for addressing both sustainable energy conversion and storage and growing environmental issues. Therefore, three nanocrystallites transition metal ferrites, CoFe2O4, CuFe2O4 and Co/CuFe2O4, were synthesized using citrate precursors and used as electrode materials for supercapacitor applications. Mixed transition metal ferrite nanoparticles were characterized by Fourier transform infrared (FT-IR), scanning electron microscope (SEM) complemented with energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), Raman spectroscopy and thermal analysis (TGA). The findings illustrated the formation of a single-phase spinel ferrite as proved from XRD data. In addition, the particle shape and particle size obtained from TEM analysis revealed that the as-synthesised nanomaterial exhibited spherical shape with a size ranging from 30 to 50 nm. The result demonstrated that while using a three-electrode configuration, the electrochemical performance of the ferrite nanoparticles achieved a remarkable maximum specific capacitance of 893 Fg−1 at a scan rate of 5 mV s−1. At a current density of 1 Ag−1, Co–Cu ferrite exhibited outstanding cycling stability for 3000 cycles with 90% capacity retention. Based on the aforementioned data, it can be considered that the remarkable electrochemical performance of the Co–Cu ferrite nanocomposites can be considered as promising materials to be used for supercapacitor electrodes.

Funder

National Research Center

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3