Effects of Ag doping on LaMnO3 photocatalysts for photoelectrochemical water splitting

Author:

Afify Mohamed S.,Faham Mohamed M. El,Eldemerdash Usama,El-Dek S. I.ORCID,Rouby Waleed M. A. El

Abstract

AbstractAs a redox material, perovskite is considered one of the most efficient photovoltaic materials for producing hydrogen via water splitting reactions. This study used a wet chemical method to synthesize La1−xAgxMnO3 nanoparticles (0.00 ≤ x ≤ 0.09). The formation, chemical composition, and morphology of samples were examined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HR-TEM). The optical properties were examined by ultraviolet visible (UV) diffuse reflectance spectroscopy. XRD demonstrated that the samples had a rhombohedral hexagonal structure with a space group R $$\overline{3 }$$ 3 ¯ c. The pore volume, pore size, and surface area were calculated and examined. The prepared samples were used as a photoanode in alkaline media for water splitting, and the photocurrent was measured. The photocurrent density recorded (14.01, 12.02, 11.67, and 10.28 μA/cm2) for x = (0.09, 0.06, 0.03, and 0.00) at 1 V vs. Ag/AgCl, respectively. The smaller impedance of the sample (x = 0.09) photoanodes than the sample (x = 0.00), which displayed a considerable decrease in charge transfer resistance. The electron lifetime (τ) increased with increasing Ag concentration, where x = 0.09 has the largest electron lifetime (τ) = 10.04 ms. Therefore, the electron–hole recombination rate of La0.91Ag0.09MnO3 is lower than LaMnO3. The samples demonstrated long-term stability for 1 h and enhanced photoelectrochemical performance.

Funder

Beni Suef University

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3