Self-organized submicron structures in photoresist films by UV-laser irradiation at water-confined conditions

Author:

Ehrhardt MartinORCID,Lai Shengying,Lorenz Pierre,Zajadacz Joachim,Han Bing,Zimmer Klaus

Abstract

AbstractA new kind of self-organized pattern formation process has been found during laser irradiation of polymer films in water confinement just below the laser ablation threshold, resulting in a randomly oriented pattern with a period of about 475 nm. The morphology, orientation, period, and amplitude of these patterns are inconsistent with both laser-induced periodic surface structures that typically consist of linear grooves with periods smaller the laser wavelength and wrinkling patterns that feature a much larger period and appear at layered systems. Excimer laser (λ = 248 nm, tp = 25 ns) exposure of 650 nm thick photoresist films on silicon wafers cause the growth of irregular submicron patterns. The pattern morphology that is examined with imaging techniques is correlated to processing parameters. The amplitude of these laser-induced self-organized (LISE) submicron structures are strengthened with pulse number and laser fluence. The experimental results are discussed together with simulations of laser heating the photoresist film in water confinement. The proposed pattern formation mechanism of such laser-induced self-organized submicron structures at temporal excitation of a confined polymer surface comprises the formation of an oriented roughness based on LIPSS that are developed to wrinkled structures due to the transient formation of a soft subsurface area that provides conditions for wrinkling of the water cooled, stiff polymer surface by laser-induced stress fields. Size, amplitude, and morphology of the LISE pattern provide good properties for applications in such fields as wetting, friction, optics, and bioactivity.

Funder

Deutsche Forschungsgemeinschaft

Leibniz-Institut für Oberflächenmodifizierung e.V.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3