Hierarchical ‘rose-petal’ ZnO/Si surfaces with reversible wettability reaching complete water repellence without chemical modification

Author:

Kanidi M.,Bardakas A.,Kerasidou A.,Anastasopoulos A.ORCID,Tsamis C.,Kandyla M.

Abstract

AbstractSmart surfaces with externally controlled wettability patterns are ubiquitous building blocks for micro-/nanofluidic and lab-on-chip devices, among others. We develop hierarchical surfaces of ZnO nanorods grown on laser-microstructured silicon with reversible photo-induced and heat-induced wettability. The as-prepared surfaces are superhydrophilic, with very low water contact angles (~ 10°), and transition to a wetting state with high water contact angles (~ 150°) when annealed in vacuum. As the annealing temperature increases to 400 °C, the surfaces become completely water-repellent. Even though the annealed surfaces present high water contact angles, at the same time, they are very adhesive for water droplets, which do not roll off even when tilted at 90° or 180o (rose-petal effect), unlike standard hydrophobic surfaces which typically combine high water contact angles with low roll-off angles. The surfaces return to the superhydrophilic state when irradiated with UV light, which indicates a reversible wettability with external stimuli. Based on this transition, we demonstrate local modification of the wetting state of the surfaces by UV irradiation through a mask, which results in directed liquid motion, useful for microfluidic applications. The high contact angles obtained in this work are usually obtained only after chemical modification of the ZnO surface with organic coatings, which was not necessary for the hierarchical surfaces developed here, reducing the cost and processing steps of the fabrication route. These rose-petal surfaces can be used as “mechanical hands” in several applications, such as no-loss transport of small liquid volumes, precision coatings, spectroscopy, and others. Furthermore, the completely water-repellent surfaces, rarely reported elsewhere, may find important applications in frictionless liquid transport for microfluidic and other devices.

Funder

National Hellenic Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3