Measuring the socio-economic footprint of the energy transition

Author:

Garcia-Casals Xavier,Ferroukhi Rabia,Parajuli Bishal

Abstract

Abstract The energy system is often treated as a self-contained system, disconnected from the broader socio-economic structures it is built upon. Understanding the enabling environment and structural elements will help to maximize the benefits of the transition and increase awareness of potential barriers and necessary adjustments along the way. IRENA has developed a methodology to measure the socio-economic footprint of energy transition roadmaps using the E3ME macro-econometric model, which evaluates the likely impacts in terms of gross domestic product (GDP), employment and human welfare. It is based on well-established historical databases and has a proven track record of policy applications. The presented socio-economic footprint analysis is based on the IRENA REmap energy transition roadmap 2018 that explores a higher deployment of low-carbon technologies, mostly renewable energy and energy efficiency. The results show that, with appropriate policies in place, reducing over 90% of the energy-related carbon dioxide emissions from the reference case via renewables and energy efficiency coupled with deep electrification of end-uses, results in consistently positive global GDP impacts across the period of analysis from 2018 to 2050. Across the world economy, the transition case leads to a relative increase of employment by 0.14% over the reference case throughout the analysed period from 2018 to 2050. In addition to GDP and employment growth, the energy transition can offer broader welfare gains. However, not all countries and regions around the world benefit equally, and just transition policies must be included to ensure all regions and communities are able to take advantage of the energy transition.

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Greenpeace: Renovables 100%. http://archivos.greenpeace.org/espana/es/reports/informes-renovables-100/ (2006). Accessed 9 Aug 2019

2. Greenpeace: Energia 3.0: http://www.revolucionenergetica.es/ingles/ (2011). Accessed 9 Aug 2019

3. Greenpeace: GWEC, Solar Power Europe. Energy [r]evolution: a sustainable World Energy Outlook. Netherlands (2015)

4. Jacobson, M.Z., et al.: 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1(1), 108–121 (2017). https://doi.org/10.1016/j.joule.2017.07.005

5. Ram, M., Bogdanov, D., Aghahosseini, A., Gulagi, A., Oyewo, A.S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., Barbosa, LSNS., Fasihi, M., Khalili, S., Dalheimer, B., Gruber, G., Traber, T., De Caluwe, F., Fell, H.-J., Breyer, C.: Global energy system based on 100% renewable energy – power, heat, transport and desalination sectors. Study by Lappeenranta University of Technology and Energy Watch Group, Lappeenranta, Berlin (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3