Screening of orange peel waste on valuable compounds by gradient multiple development diode-array high-performance thin-layer chromatography

Author:

Spangenberg BerndORCID,Seigel Andrea,Brämer Regina

Abstract

AbstractHigh-performance thin-layer chromatography (HPTLC), as the modern form of TLC (thin-layer chromatography), is suitable for detecting pharmaceutically active compounds over a wide polarity range using the gradient multiple development (GMD) technique. Diode-array detection (DAD) in conjunction with HPTLC can simultaneously acquire ultraviolet‒visible (UV‒VIS) and fluorescence spectra directly from the plate. Visualization as a contour plot helps to identify separated zones. An orange peel extract is used as an example to show how GMD‒DAD‒HPTLC in seven different developments with seven different solvents can provide an overview of the entire sample. More than 50 compounds in the extract can be separated on a 6-cm HPTLC plate. Such separations take place in the biologically inert stationary phase of HPTLC, making it a suitable method for effect-directed analysis (EDA). HPTLC‒EDA can even be performed with living organism, as confirmed by the use of Aliivibrio fischeri bacteria to detect bioluminescence as a measure of toxicity. The combining of gradient multiple development planar chromatography with diode-array detection and effect-directed analysis (GMD‒DAD‒HPTLC‒EDA) in conjunction with specific staining methods and time-of-flight mass spectrometry (TOF‒MS) will be the method of choice to find new chemical structures from plant extracts that can serve as the basic structure for new pharmaceutically active compounds.

Funder

Hochschule Offenburg

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3