Facile chemical hydrophobization of thin-layer plates by vapor deposition of methyltrimethoxysilane for reversed-phase chromatography

Author:

Jaxel JulienORCID,Merio Alice,Kohlhuber NadineORCID,Beaumont MarcoORCID,Wimmer RupertORCID,Rosenau ThomasORCID,Hansmann ChristianORCID,Liebner FalkORCID,Böhmdorfer StefanORCID

Abstract

AbstractReversed-phase chromatography is based on a polar mobile phase and an apolar stationary phase. This separation mode is regularly used in planar (thin-layer) chromatography, and the necessary plates are commercially available. We investigated the preparation of hydrophobic plates for thin-layer chromatography by chemical vapor sorption of methyltrimethoxysilane directly onto a normal-phase plate. For this, a commercial normal-phase plate is simply exposed to the vapors of the reagent in a closed vessel. The obtained plates were characterized by infrared spectroscopy and dynamic water vapor sorption, which reported an extensive conversion of free hydroxyl groups by the reagent. The obtained plates were hydrophobic with a water contact angle close to 135°. The extent of hydrophobization precluded the use of pure water as an eluent while mixtures with organic solvents were perfectly adequate. The plates’ chromatographic performance was compared with that of C18 and paraffin-coated plates. For this, a set of parabens was separated with mixtures of acetone and water. The height of a theoretical plate was similar for the hydrophobized and the C18 plates (50–90 µm) and larger for the paraffin-coated ones. In contrast to the C18 plate, the hydrophobized and the paraffin-coated plates showed some selectivity for the analyte pair n-butylparaben and iso-butylparaben, which indicates a separation mechanism with the potential for regioselectivity.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3