Abstract
AbstractProducts of terms of arithmetic progressions yielding a perfect power have been long investigated by many mathematicians. In the particular case of consecutive integers, various finiteness results are known for the polynomial values of such products. In the present paper we consider generalizations of these result in various directions.
Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Bazsó, A., Bérczes, A., Hajdu, L., Luca, F.: Polynomial values of sums of products of consecutive integers. Monat. Math. 187, 21–34 (2018)
2. Bennett, M., Siksek, S.: A conjecture of Erdős, supersingular primes and short character sums (2017). arXiv:1709.01022 [math.NT]
3. Bérczes, A., Brindza, B., Hajdu, L.: On the power values of polynomials. Publ. Math. Debrecen 53, 375–381 (1998)
4. Beukers, F., Shorey, T.N., Tijdeman, R.: Irreducibility of polynomials and arithmetic progressions with equal product of terms. In: Győry, K., Iwaniec, H., Urbanowicz, J. (eds.) Number Theory in Progress (Proc. Internat. Conf. in Number Theory in Honor of A. Schinzel, Zakopane, 1997), pp. 11–26. de Gruyter, Berlin (1999)
5. Bilu, Yu., Kulkarni, M., Sury, B.: The Diophantine equation $$x(x+1)\ldots (x+(m-1))+r=y^n$$. Acta Arith. 113, 303–308 (2004)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献