Korovkin-type theorems on $$B({\mathcal {H}})$$ and their applications to function spaces

Author:

Bauer WolframORCID,Kumar V. B. Kiran,Rajan Rahul

Abstract

AbstractWe prove Korovkin-type theorems in the setting of infinite dimensional Hilbert space operators. The classical Korovkin theorem unified several approximation processes. Also, the non-commutative versions of the theorem were obtained in various settings such as Banach algebras, $$C^{*}$$ C -algebras and lattices etc. The Korovkin-type theorem in the context of preconditioning large linear systems with Toeplitz structure can be found in the recent literature. In this article, we obtain a Korovkin-type theorem on $$B({\mathcal {H}})$$ B ( H ) which generalizes all such results in the recent literature. As an application of this result, we obtain Korovkin-type approximation for Toeplitz operators acting on various function spaces including Bergman space $$A^{2}({\mathbb {D}})$$ A 2 ( D ) , Fock space $$F^{2}({\mathbb {C}})$$ F 2 ( C ) etc. These results are closely related to the preconditioning problem for operator equations with Toeplitz structure on the unit disk $${\mathbb {D}}$$ D and on the whole complex plane $${\mathbb {C}}$$ C . It is worthwhile to notice that so far such results are available for Toeplitz operators on circle only. This also establishes the role of Korovkin-type approximation techniques on function spaces with certain oscillation property. To address the function theoretic questions using these operator theory tools will be an interesting area of further research.

Funder

Kerala State Higher education council

IP@Leibniz

UGC-SRF

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Korovkin-type approximation problems for bounded function spaces;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-04-11

2. Korovkin-type theorems and local approximation problems;Expositiones Mathematicae;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3