The Transpolar Drift current: an ocean-ice-wind complex in rotating, spherical coordinates

Author:

Johnson R. S.ORCID

Abstract

AbstractStarting from the governing equations for a viscous, incompressible fluid, written in a rotating, spherical coordinate system that is valid at the North Pole, the thin-shell approximation is invoked. No further approximations are needed in the derivation of the system of asymptotic equations used here. Suitable stress conditions on the upper and lower surfaces of the ice are described, leading to the construction of a solution for the Transpolar Drift current. This involves the specification of a suitable geostrophic flow, combined with an Ekman component. Then, via the stress conditions across the ice at the surface, a solution for the motion of the ice, and for the associated wind blowing over it, are obtained. In addition, the model adopted here provides a prediction for the reduction in ice thickness along the Transpolar Drift current as it passes through the Fram Strait. The formulation that we present allows considerable freedom in the choices of the various elements of the flow; the model chosen for the physical properties of the ice is particularly significant. All these aspects are discussed critically, and it is shown that many avenues for future investigation have been opened.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3