Abstract
AbstractPrempreesuk, Noppakaew, and Pongsriiam determined the Zeckendorf representation of the multiplicative inverse of 2 modulo $$F_n$$
F
n
, for every positive integer n not divisible by 3, where $$F_n$$
F
n
denotes the nth Fibonacci number. We determine the Zeckendorf representation of the multiplicative inverse of a modulo $$F_n$$
F
n
, for every fixed integer $$a \ge 3$$
a
≥
3
and for all positive integers n with $$\gcd (a, F_n) = 1$$
gcd
(
a
,
F
n
)
=
1
. Our proof makes use of the so-called base-$$\varphi $$
φ
expansion of real numbers.
Funder
Università degli Studi di Trento
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献