Abstract
AbstractIn the context of the initial data and an amplitude parameter $$\varepsilon $$
ε
, we establish a local existence result for a highly nonlinear shallow water equation on the real line. This result holds in the space $$H^k$$
H
k
as long as $$k>5/2$$
k
>
5
/
2
. Additionally, we illustrate that the threshold time for the occurrence of wave breaking in the surging type is on the order of $$\varepsilon ^{-1},$$
ε
-
1
,
while plunging breakers do not manifest. Lastly, in accordance with ODE theory, it is demonstrated that there are no exact solitary wave solutions in the form of sech and $$sech^2$$
s
e
c
h
2
.
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Alinhac, S., Gérard, P.: Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels. InterEditions, Paris; Editions du Centre National de la Recherche Scientifique (CNRS), Meudon, (1991). 190 pp
2. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)
3. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
4. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
5. Degasperis, D., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, pp. 23–37. World Scientific, Singapore (1999)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献