Abstract
AbstractLet $$\Phi _i, \Psi _i$$
Φ
i
,
Ψ
i
be Young functions, $$\omega _i$$
ω
i
be weights and $$M^{\Phi _i,\Psi _i}_{\omega _i}(\mathbb {R} ^{d})$$
M
ω
i
Φ
i
,
Ψ
i
(
R
d
)
be the corresponding Orlicz modulation spaces for $$i=1,2,3$$
i
=
1
,
2
,
3
. We consider linear (respect. bilinear) multipliers on $$\mathbb {R} ^{d}$$
R
d
, that is bounded measurable functions $$m(\xi )$$
m
(
ξ
)
(respect. $$m(\xi ,\eta )$$
m
(
ξ
,
η
)
) on $$\mathbb {R} ^{d}$$
R
d
(respect. $$\mathbb {R} ^{2d}$$
R
2
d
) such that $$\begin{aligned} T_m(f)(x)=\int _{\mathbb {R} ^{d}}{\hat{f}}(\xi ) m(\xi )e^{2\pi i \langle \xi , x\rangle }d\xi \end{aligned}$$
T
m
(
f
)
(
x
)
=
∫
R
d
f
^
(
ξ
)
m
(
ξ
)
e
2
π
i
⟨
ξ
,
x
⟩
d
ξ
(respect. $$\begin{aligned} B_m(f_1,f_2)(x)=\int _{\mathbb {R} ^{d}}\int _{\mathbb {R} ^{d}} \hat{f_1}(\xi ) \hat{f_2}(\eta )m(\xi ,\eta )e^{2\pi i \langle \xi +\eta , x\rangle }d\xi d\eta \end{aligned}$$
B
m
(
f
1
,
f
2
)
(
x
)
=
∫
R
d
∫
R
d
f
1
^
(
ξ
)
f
2
^
(
η
)
m
(
ξ
,
η
)
e
2
π
i
⟨
ξ
+
η
,
x
⟩
d
ξ
d
η
define a bounded linear (respect. bilinear) operator from $$M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})$$
M
ω
1
Φ
1
,
Ψ
1
(
R
d
)
to $$M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})$$
M
ω
2
Φ
2
,
Ψ
2
(
R
d
)
(respect. $$M^{\Phi _1,\Psi _1}_{\omega _1}(\mathbb {R} ^{d})\times M^{\Phi _2,\Psi _2}_{\omega _2}(\mathbb {R} ^{d})$$
M
ω
1
Φ
1
,
Ψ
1
(
R
d
)
×
M
ω
2
Φ
2
,
Ψ
2
(
R
d
)
to $$M^{\Phi _3,\Psi _3}_{\omega _3}(\mathbb {R} ^{d})$$
M
ω
3
Φ
3
,
Ψ
3
(
R
d
)
). In this paper we study some properties of these spaces and give methods to generate linear and bilinear multipliers between Orlicz modulation spaces.
Publisher
Springer Science and Business Media LLC