Integer-valued polynomials on valuation rings of global fields with prescribed lengths of factorizations

Author:

Fadinger-Held Victor,Frisch Sophie,Windisch DanielORCID

Abstract

AbstractLet V be a valuation ring of a global field K. We show that for all positive integers k and $$1 < n_1 \le \cdots \le n_k$$ 1 < n 1 n k there exists an integer-valued polynomial on V, that is, an element of $${{\,\textrm{Int}\,}}(V) = \{ f \in K[X] \mid f(V) \subseteq V \}$$ Int ( V ) = { f K [ X ] f ( V ) V } , which has precisely k essentially different factorizations into irreducible elements of $${{\,\textrm{Int}\,}}(V)$$ Int ( V ) whose lengths are exactly $$n_1,\ldots ,n_k$$ n 1 , , n k . In fact, we show more, namely that the same result holds true for every discrete valuation domain V with finite residue field such that the quotient field of V admits a valuation ring independent of V whose maximal ideal is principal or whose residue field is finite. If the quotient field of V is a purely transcendental extension of an arbitrary field, this property is satisfied. This solves an open problem proposed by Cahen, Fontana, Frisch and Glaz in these cases.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference15 articles.

1. Elements of Mathematics;N Bourbaki,1989

2. Cahen, Paul-Jean., Chabert, Jean-Luc.: Elasticity for integral-valued polynomials. J. Pure Appl. Algebra 103(3), 303–311 (1995). https://doi.org/10.1016/0022-4049(94)00108-U

3. Commutative Algebra;Paul-Jean Cahen,2014

4. Cahen, P.J., Chabert, J.L.: Integer-Valued Polynomials, American Mathematical Society Translations. American Mathematical Society (1997). https://books.google.at/books?id=OdLxBwAAQBAJ

5. Chapman, S.T., Krause, U.: A closer look at non-unique factorization via atomic decay and strong atoms. Prog. Commut. Algebra 2, 301–318 (2012). https://doi.org/10.1515/9783110278606.301

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3