Direct catalytic oxidation and removal of NO in flue gas by the micro bubbles gas–liquid dispersion system

Author:

Sun Hongrui,Yang Guanghui,Aftab Tallal Bin,Xue Fei,Xiao Zhengguo,Guo Qihao,Li Dengxin

Abstract

Abstract The method of micro bubbles is widely applied in the fields of water and soil treatment. A novel treatment method of NO in flue gas through a gas–liquid two-phase system formed by micro bubbles is proposed in this study. The system depends on the generation of hydroxyl radicals. The NO removal performance of the micro gas–liquid dispersion system induced by catalysts and O3 was explored and the reaction pathways were elucidated. Micro bubbles, Fe2+, and Mn2+ in solution improved NO removal performance significantly. Salinity and surfactants affected the removal performance of NO by altering micro bubbles. In the presence of Fe2+, the NO removal rate reached 65.2% at pH 5, 75.8% under 0.5 g/L NaCl and 82.1% under 6 mg/L sodium dodecyl sulfate. In the presence of Mn2+, the NO removal rate reached 69.2% at pH 5, 83.2% under 0.5 g/L NaCl and 92.3% under 6 mg/L sodium dodecyl sulfate. However, in the presence of both Mn2+ and Fe2+, NO conversion rate was 93.2%. The NO removal rate in the presence of O3 was further improved under the same conditions. The study provides the basis for the application and development of micro bubbles in flue gas treatments for NO removal. The results can help to solve the problems of high operating cost, large oxidant consumption, secondary pollution, and high energy consumption in traditional NO removal methods. Graphic abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3