Abstract
Abstract
How life on Earth began remains an unexplained scientific problem. This problem is nuanced in its practical details and the way attempted explanations feedback with questions and developments in other areas of science, including astronomy, biology, and planetary science. Prebiotic chemistry attempts to address this issue theoretically, experimentally, and observationally. The ease of formation of bioorganic compounds under plausible prebiotic conditions suggests that these molecules were present in the primitive terrestrial environment. In addition to synthesis in the Earth's primordial atmosphere and oceans, it is likely that the infall of comets, meteorites, and interplanetary dust particles, as well as submarine hydrothermal vent synthesis, may have contributed to prebiotic organic evolution. The primordial organic soup may have been quite complex, but it did not likely include all of the compounds found in modern organisms. Regardless of their origin, organic compounds would need to be concentrated and complexified by environmental mechanisms. While this review is by no means exhaustive, many of the issues central to the state of the art of prebiotic chemistry are reviewed here.
Publisher
Springer Science and Business Media LLC
Subject
Education,Ecology, Evolution, Behavior and Systematics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献