Abstract
Abstract
Heterochrony can be defined as change to the timing or rate of development relative to the ancestor. Because organisms generally change in shape as well as increase in size during their development, any variation to the duration of growth or to the rate of growth of different parts of the organism can cause morphological changes in the descendant form. Heterochrony takes the form of both increased and decreased degrees of development, known as “peramorphosis” and “paedomorphosis,” respectively. These are the morphological consequences of the operation of processes that change the duration of the period of an individual’s growth, either starting or stopping it earlier or later than in the ancestor, or by extending or contracting the period of growth. Heterochrony operates both intra- and interspecifically and is the source of much intraspecific variation. It is often also the cause of sexual dimorphism. Selection of a sequence of species with a specific heterochronic trait can produce evolutionary trends in the form of pera- or paedomorphoclines. Many different life history traits arise from the operation of heterochronic processes, and these may sometimes be the targets of selection rather than morphological features themselves. It has been suggested that some significant steps in evolution, such as the evolution of vertebrates, were engendered by heterochrony. Human evolution was fuelled by heterochrony, with some traits, such as a large brain, being peramorphic, whereas others, such as reduced jaw size, are paedomorphic.
Publisher
Springer Science and Business Media LLC
Subject
Education,Ecology, Evolution, Behavior and Systematics
Reference56 articles.
1. Aiello LC, Wheeler P. The expensive-tissue hypothesis. Curr Anthropol. 1995;36:199–221.
2. Alberch P, Gould SJ, Oster GF, Wake DB. Size and shape in ontogeny and phylogeny. Paleobiology. 1979;5:296–317.
3. Brown L, Rockwood LL. On the dilemma of horns. Nat Hist. 1986;95(7):54–61.
4. Chinsamy A. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Pal Af. 1990;27:77–82.
5. Cook D. Sexual selection in dung beetles I. A multivariate study of the morphological variation in two species of Onthophagus (Scarabaeidae: Onthophagini). Aust J Sci. 1987;35:123–32.
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献