Communication-robust multi-agent learning by adaptable auxiliary multi-agent adversary generation

Author:

Yuan Lei,Chen Feng,Zhang Zongzhang,Yu Yang

Abstract

AbstractCommunication can promote coordination in cooperative Multi-Agent Reinforcement Learning (MARL). Nowadays, existing works mainly focus on improving the communication efficiency of agents, neglecting that real-world communication is much more challenging as there may exist noise or potential attackers. Thus the robustness of the communication-based policies becomes an emergent and severe issue that needs more exploration. In this paper, we posit that the ego system1) trained with auxiliary adversaries may handle this limitation and propose an adaptable method of Multi-Agent Auxiliary Adversaries Generation for robust Communication, dubbed MA3C, to obtain a robust communication-based policy. In specific, we introduce a novel message-attacking approach that models the learning of the auxiliary attacker as a cooperative problem under a shared goal to minimize the coordination ability of the ego system, with which every information channel may suffer from distinct message attacks. Furthermore, as naive adversarial training may impede the generalization ability of the ego system, we design an attacker population generation approach based on evolutionary learning. Finally, the ego system is paired with an attacker population and then alternatively trained against the continuously evolving attackers to improve its robustness, meaning that both the ego system and the attackers are adaptable. Extensive experiments on multiple benchmarks indicate that our proposed MA3C provides comparable or better robustness and generalization ability than other baselines.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science,Theoretical Computer Science

Reference72 articles.

1. Zhu C, Dastani M, Wang S. A survey of multi-agent reinforcement learning with communication. 2022, arXiv preprint arXiv: 2203.08975

2. Ding Z, Huang T, Lu Z. Learning individually inferred communication for multi-agent cooperation. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 1851

3. Wang R, He X, Yu R, Qiu W, An B, Rabinovich Z. Learning efficient multi-agent communication: an information bottleneck approach. In: Proceedings of the 37th International Conference on Machine Learning. 2020, 919

4. Xue D, Yuan L, Zhang Z, Yu Y. Efficient multi-agent communication via Shapley message value. In: Proceedings of the 31st International Joint Conference on Artificial Intelligence. 2022, 578–584

5. Guan C, Chen F, Yuan L, Wang C, Yin H, Zhang Z, Yu Y. Efficient multi-agent communication via self-supervised information aggregation. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. 2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3