1. Li M, Andersen D G, Park J W, Smola A J, Ahmed A, Josifovski V, Long J, Shekita E J, Su B Y. Scaling distributed machine learning with the parameter server. In: Proceedings of USENIX Symposium on Operating Systems Design and Implementation. 2014, 583–598
2. Chen T Q, Li M, Li Y T, Lin M, Wang N Y, Wang M J, Xiao T J, Xu B, Zhang C Y, Zhang Z. MXNet: a flexible and efficient machine learning library for heterogeneous distributed system. 2015, arXiv preprint arXiv: 1512.01274
3. Xing E P, Ho Q R, Dai W, Kim J K, Wei J L, Lee S H, Zheng X, Xie P T, Kumar A, Yu Y L. Petuum: a new platform for distributed machine learning on big data. In: Proceedings of ACM Conference on Knowledge Discovery and Data Mining. 2015, 1335–1344
4. Abadi M, Barham P, Chen J M, Chen Z F, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray D G, Steiner B, Tucker P A, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X Q. TensorFlow: a system for large-scale machine learning. In: Proceedings of USENIX Symposium on Operating Systems Design and Implementation. 2016, 265–283
5. Recht B, Re C, Wright S J, Niu F. Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Proceeding of the 24th International Conference on Neural Information Processing Systems. 2011, 693–701