Determining node duty cycle using Q-learning and linear regression for WSN
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Computer Science,Theoretical Computer Science
Link
https://link.springer.com/content/pdf/10.1007/s11704-020-9153-6.pdf
Reference20 articles.
1. Alemdar A, Ibnkahla M. Wireless sensor networks: applications and challenges. In: Proceedings of the 9th International Symposium on Signal Processing and Its Applications. 2007, 1–6
2. AlSkaif T, Bellalta B, Zapata M G, Ordinas J M B. Energy efficiency of MAC protocols in low data rate wireless multimedia sensor networks: a comparative study. Ad Hoc Networks, 2017, 56: 141–157
3. Van Dam T, Langendoen K. An adaptive energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems. 2003, 171–180
4. Zheng R, Kravets R. On-demand power management for ad hoc networks. Ad Hoc Networks, 2005, 3(1): 51–68
5. Zheng R, Hou J C, Sha L. Asynchronous wakeup for ad hoc networks. In: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking & Computing. 2003, 35–45
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Product quality time series prediction with attention-based convolutional recurrent neural network;Applied Intelligence;2024-08-27
2. Optimizing Energy Resources in WSNs: ARIMA Feature Selection Meets Adaptive Reinforcement Learning;Fiber and Integrated Optics;2024-03-03
3. Integration of artificial intelligence (AI) with sensor networks: Trends, challenges, and future directions;Journal of King Saud University - Computer and Information Sciences;2024-01
4. Q-Learning and Efficient Low-Quantity Charge Method for Nodes to Extend the Lifetime of Wireless Sensor Networks;Electronics;2023-11-17
5. Multi-granularity fusion resource allocation algorithm based on dual-attention deep reinforcement learning and lifelong learning architecture in heterogeneous IIoT;Information Fusion;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3