A survey on federated learning: a perspective from multi-party computation

Author:

Liu Fengxia,Zheng Zhiming,Shi Yexuan,Tong Yongxin,Zhang Yi

Abstract

AbstractFederated learning is a promising learning paradigm that allows collaborative training of models across multiple data owners without sharing their raw datasets. To enhance privacy in federated learning, multi-party computation can be leveraged for secure communication and computation during model training. This survey provides a comprehensive review on how to integrate mainstream multi-party computation techniques into diverse federated learning setups for guaranteed privacy, as well as the corresponding optimization techniques to improve model accuracy and training efficiency. We also pinpoint future directions to deploy federated learning to a wider range of applications.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science,Theoretical Computer Science

Reference90 articles.

1. Konečný J, McMahan H B, Yu F X, Richtárik P, Suresh A T, Bacon D Federated learning: strategies for improving communication efficiency. 2016, arXiv preprint arXiv: 1610.05492

2. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and applications. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 12

3. Tong Y, Zeng Y, Zhou Z, Liu B, Shi Y, Li S, Xu K, Lv W. Federated computing: query, learning, and beyond. IEEE Data Engineering Bulletin, 2023, 46(1): 9–26

4. Zhang K, Song X, Zhang C, Yu S. Challenges and future directions of secure federated learning: a survey. Frontiers of Computer Science, 2022, 16(5): 165817

5. Chen Y, Qin X, Wang J, Yu C, Gao W. FedHealth: a federated transfer learning framework for wearable healthcare. IEEE Intelligent Systems, 2020, 35(4): 83–93

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Federated Learning for Collaborative Cyber Defense;Advances in Digital Crime, Forensics, and Cyber Terrorism;2024-09-13

2. Dynamic heterogeneous federated learning with multi-level prototypes;Pattern Recognition;2024-09

3. FedHGL: Cross-Institutional Federated Heterogeneous Graph Learning for IoT;IEEE Internet of Things Journal;2024-08-01

4. Multi-party privacy-preserving decision tree training with a privileged party;Science China Information Sciences;2024-07-23

5. Fed-AttGRU Privacy-preserving Federated Interest Recommendation;ACM Turing Award Celebration Conference 2024;2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3