1. McMahan H B, Moore E, Ramage D, Arcas B A Y. Federated learning of deep networks using model averaging. 2016, arXiv preprint arXiv: 1602.05629
2. McMahan H B, Moore E, Ramage D, Hampson S, Arcas B A Y. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. 2017, 1273–1282
3. Geiping J, Bauermeister H, Dröge H, Moeller M. Inverting gradients-how easy is it to break privacy in federated learning?. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020, 1421
4. Jeon J, Kim J, Lee K, Oh S, Ok J. Gradient inversion with generative image prior. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021, 29898–29908
5. Yin H, Mallya A, Vahdat A, Alvarez J M, Kautz J, Molchanov P. See through gradients: image batch recovery via gradInversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, 16332–16341