1. Ke L, Gupta U, Cho B Y, Brooks D, Chandra V, Diril U, Firoozshahian A, Hazelwood K, Jia B, Lee H H S, Li M, Maher B, Mudigere D, Naumov M, Schatz M, Smelyanskiy M, Wang X, Reagen B, Wu C J, Hempstead M, Zhang X. RecNMP: Accelerating personalized recommendation with near-memory processing. In: Proceedings of the 47th ACM/IEEE Annual International Symposium on Computer Architecture. 2020, 790–803
2. Naumov M, Mudigere D, Shi H J M, Huang J, Sundaraman N, Park J, Wang X, Gupta U, Wu C J, Azzolini A G, Dzhulgakov D, Mallevich A, Cherniavskii I, Lu Y, Krishnamoorthi R, Yu A, Kondratenko V, Pereira S, Chen X, Chen W, Rao V, Jia B, Xiong L, Smelyanskiy M. Deep learning recommendation model for personalization and recommendation systems. 2019, arXiv preprint arXiv: 1906.00091
3. Gupta U, Wu C J, Wang X, Naumov M, Reagen B, Brooks D, Cottel B, Hazelwood K, Hempstead M, Jia B, Lee H H S, Malevich A, Mudigere D, Smelyanskiy M, Xiong L, Zhang X. The architectural implications of Facebook’s DNN-based personalized recommendation. In: Proceedings of 2020 IEEE International Symposium on High Performance Computer Architecture. 2020, 488–501
4. Wu J, He X, Wang X, Wang Q, Chen W, Lian J, Xie X. Graph convolution machine for context-aware recommender system. Frontiers of Computer Science, 2022, 16(6): 166614
5. Guo H, Tang R, Ye Y, Li Z, He X, Dong Z. DeepFM: an end-to-end wide & deep learning framework for CTR prediction. 2018, arXiv preprint arXiv: 1804.04950