Parallel exploration via negatively correlated search

Author:

Yang Peng,Yang Qi,Tang Ke,Yao Xin

Abstract

AbstractEffective exploration is key to a successful search process. The recently proposed negatively correlated search (NCS) tries to achieve this by coordinated parallel exploration, where a set of search processes are driven to be negatively correlated so that different promising areas of the search space can be visited simultaneously. Despite successful applications of NCS, the negatively correlated search behaviors were mostly devised by intuition, while deeper (e.g., mathematical) understanding is missing. In this paper, a more principled NCS, namely NCNES, is presented, showing that the parallel exploration is equivalent to a process of seeking probabilistic models that both lead to solutions of high quality and are distant from previous obtained probabilistic models. Reinforcement learning, for which exploration is of particular importance, are considered for empirical assessment. The proposed NCNES is applied to directly train a deep convolution network with 1.7 million connection weights for playing Atari games. Empirical results show that the significant advantages of NCNES, especially on games with uncertain and delayed rewards, can be highly owed to the effective parallel exploration ability.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science,Theoretical Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3