DMFVAE: miRNA-disease associations prediction based on deep matrix factorization method with variational autoencoder

Author:

Wei Pijing,Wang Qianqian,Gao Zhen,Cao Ruifen,Zheng Chunhou

Abstract

AbstractMicroRNAs (miRNAs) are closely related to numerous complex human diseases, therefore, exploring miRNA-disease associations (MDAs) can help people gain a better understanding of complex disease mechanism. An increasing number of computational methods have been developed to predict MDAs. However, the sparsity of the MDAs may hinder the performance of many methods. In addition, many methods fail to capture the nonlinear relationships of miRNA-disease network and inadequately leverage the features of network and neighbor nodes. In this study, we propose a deep matrix factorization model with variational autoencoder (DMFVAE) to predict potential MDAs. DMFVAE first decomposes the original association matrix and the enhanced association matrix, in which the enhanced association matrix is enhanced by self-adjusting the nearest neighbor method, to obtain sparse vectors and dense vectors, respectively. Then, the variational encoder is employed to obtain the nonlinear latent vectors of miRNA and disease for the sparse vectors, and meanwhile, node2vec is used to obtain the network structure embedding vectors of miRNA and disease for the dense vectors. Finally, sample features are acquired by combining the latent vectors and network structure embedding vectors, and the final prediction is implemented by convolutional neural network with channel attention. To evaluate the performance of DMFVAE, we conduct five-fold cross validation on the HMDD v2.0 and HMDD v3.2 datasets and the results show that DMFVAE performs well. Furthermore, case studies on lung neoplasms, colon neoplasms, and esophageal neoplasms confirm the ability of DMFVAE in identifying potential miRNAs for human diseases.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3