Publisher
Springer Science and Business Media LLC
Reference22 articles.
1. Bui, Q. T., Nguyen, Q. H., Pham, V. M., Pham, M. H., & Tran, A. T. (2019). Understanding spatial variations of malaria in Vietnam using remotely sensed data integrated into GIS and machine learning classifiers. Geocarto International, 34(12), 1300–1314. https://doi.org/10.1080/10106049.2018.1478890.
2. Chourasia, M. K., Raghavendra, K., Bhatt, R. M., Swain, D. K., Valecha, N., & Kleinschmidt, I. (2017). Burden of asymptomatic malaria among a tribal population in a forested village of central India: A hidden challenge for malaria control in India. Public Health, 147, 92–97. https://doi.org/10.1016/j.puhe.2017.02.010.
3. Cleary, E., Hetzel, M. W., Siba, P., Lau, C. L., & Clements, A. C. (2021). Spatial prediction of malaria prevalence in Papua New Guinea: A comparison of Bayesian decision network and multivariate regression modelling approaches for improved accuracy in prevalence prediction. Malaria Journal, 20(1), 1–16. https://doi.org/10.1186/s12936-021-03804-0.
4. Couret, J., & Benedict, M. Q. (2014). A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae). BMC Ecology, 14(1), 1–15. https://doi.org/10.1186/1472-6785-14-3.
5. Dhiman, R. C., Sharma, S. K., Pillai, C. R., & Subbarao, S. K. (2001). Investigation of outbreak of malaria in tribal area of Visakhapatnam, Andhra Pradesh. Current Science, pp. 781–785. https://www.jstor.org/stable/24105666.