1. Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., & Thakur, P. K. (2012). Climate and LULC change scenarios to study its impact on hydrological regime. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS),
39-B8, 147–152.
https://doi.org/10.5194/isprsarchives-xxxix-b8-147-2012
.
2. Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., Thakur, P. K., & Roy, P. S. (2013). Runoff potential assessment over Indian landmass: A macro-scale hydrological modeling approach. Current Science,
104(7), 950–959.
3. Al Bitar, A., Leroux, D., Kerr, Y. H., Merlin, O., Richaume, P., Sahoo, A., et al. (2012). Evaluation of SMOS soil moisture products over continental US using the SCAN/SNOTEL network. IEEE Transactions on Geoscience and Remote Sensing,
50(5), 1572–1586.
4. Behera, S. S., Nikam, B. R. & Babel, M. S. (2017). Assimilation of remotely sensed soil moisture into hydrological model: A case study of Mahanadi Basin, India. In: Proceedings of ACRS 2017: 38th Asian Conference on Remote Sensing organized at New Delhi, India, October 23–27, 2017.
5. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R., Ménard, C. B., et al. (2011). The joint UK land environment simulator (JULES), model description—Part 1: Energy and water fluxes. Geoscientific Model Development,
4(3), 677–699.