Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks

Author:

Zhang Wenhao,Zheng FengjieORCID,Zhang Wenpeng,Yang Xiufeng

Abstract

AbstractFine particulate matter (PM2.5) has a considerable impact on the environment, climate change, and human health. Herein, we introduce a deep neural network model for deriving ground-level, hourly PM2.5 concentrations by Himawari-8 aerosol optical depth, meteorological variables, and land cover information. A total of 151,726 records were collected from 313 ground-level PM2.5 monitoring stations (spread across the North China Plain) to calibrate and test the proposed model. The sample- and site-based cross-validation yielded satisfactory performance, with correlation coefficients > 0.8 (R = 0.86 and 0.83, respectively). Furthermore, the variation in mean ground-level hourly PM2.5 concentrations, using 2017 data, showed that the proposed method could be applied for spatiotemporal continuous PM2.5 monitoring. This study will serve as a reference for the application of geostationary meteorological satellite to perform ground-level PM2.5 estimation and the utilization in atmospheric monitoring.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Civil Aerospace Pre-research Project

Science for Earthquake Resilience

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3