Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. Aitkenhead, M. J., & Wright, G. G. (2004). Mapping land use in NE Scotland with neural networks from remote sensing imagery. In Proceedings of the remote sensing and photogrammetry society annual conference (p. 11). The Macaulay Institute, Craigiebuckler, UK Workshop Output. https://macaulay.webarchive.hutton.ac.uk/workshop/remotesensing2004/
2. Aitkenhead, M. J., McDonald, A. J. S., Dawson, J. J., Couper, G., Smart, R. P., Billett, M., Hope, D., & Palmer, S. (2003). A novel method for training neural networks for time-series prediction in environmental systems. Ecological Modelling, 162(1-2), 87–95. https://doi.org/10.1016/S0304-3800(02)00401-5
3. Al-Doski, J., Hassan, F. M., Mossa, H. A., Aus, A., & Najim (2022). Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping. Photogrammetric Engineering & Remote Sensing, 88(8), 507–516. https://doi.org/10.14358/PERS.21-00082R2
4. Al-Doski, Jwan, F. M., Hassan, M., Norman, & Aus, A. (2022). Najim. Interaction of image fusion techniques and atmospheric correction for improve SVM accuracy. Earth Science Informatics, 15(4), 2673–2687. https://doi.org/10.1007/s12145-022-00884-7
5. Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.