Abstract
AbstractMajor driving forces can alter Land use/Land cover (LULC) dynamics and affect landscape sustainability around the Nile Delta of Egypt. The present study aims at evaluating and mapping changes in LULC and assessing the dynamics of LULC and Land Surface Temperature (LST) around the two branches of the Nile Delta, Egypt using Landsat data and GIS. Calibrated Landsat images were acquired on 2000, 2014 and 2019 and processed to produce LULC, environmental indices and LST, respectively, using ENVI 5.3. ArcGIS 10.1 was used to extract a transition map from 2000 to 2019 around the two branches. The results displayed that five classes of LULC were extracted around Damietta and Rosetta branches; water, urban, bare, dense and spare vegetation. A continuous increase in water was recorded around Damietta branch; 13.66 km2 (197%), 14.21 km2 (2.04%) and 16.54 km2 (2.30%) in 2000, 2014 and 2019, respectively. Also, urban area was increased around Damietta and Rosetta branch as follows: 53.6 km2 (7.72%), 58.34 (8.37%) and 90.37 km2 (13.70%) in 2000, 2014 and 2019, 59.55 km2 (6.809%), 104.16 (11.90%) and 149.77 km2 (17.11%) in 2000, 2014 and 2019, respectively. Urban achieved the highest gain of 24.807 and 85.70 km2 at the expense of dense vegetation around Damietta and Rosetta branch, respectively. The results showed that the decrease in vegetation and the increase in urban density lead to increasing LST of the study area. The changes in LST can be monitored depending on the construction materials such as the presence of green areas and topography. Urban and bare lands have the highest LST while the water bodies and vegetation temperature showed a tendency to decrease. It can be concluded that urban areas increased with annual rate 0.27 and 0.54 km2 and vegetation decreased with annual rate −0.57 and−0.55 km2 around Damietta and Rosetta branches from 2000 to 2019. Results showed that comprehensive index was 321.14 and 330.03 around Damietta and Rosetta branch, the higher the degree of development and exploitation. There has been a significant land use change which was due to an increase in population. Overall, this research provides valuable data about changes in LU/LC around the Nile Delta branches, it is very important for decision maker and stockholders for proper management.
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development
Reference32 articles.
1. Abd El-Hamid, H. T., El-Alfy, M. A., & Elnaggar, A. (2020). Prediction of future situation of land use/cover change and modeling sensitivity to pollution in Edku Lake. Egypt based on geospatial analyses: GeoJournal. https://doi.org/10.1007/s10708-020-10167-7.
2. Abd El-Hamid, H. T., & Hong, G. (2020). Hyperspectral remote sensing for extraction of soil salinization in the northern region of Ningxia. Modeling Earth Systems and Environment, 6, 2487–2493. https://doi.org/10.1007/s40808-020-00829-3.
3. Abdel Hamid, H. T., Wenlong, W., & Qiaomin, L. (2020). Environmental sensitivity of flash flood hazard using geospatial techniques. Global Journal of Environmental Science and Management, 6(1), 31–46.
4. Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607–11626.
5. Chen, Y. C., Chiu, H. W., Su, Y. F., Wu, Y. C., & Cheng, K. S. (2017). Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landscape and Urban Planning, 157, 247–258.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献