Funder
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Amancio, D. R., Comin, C. H., Casanova, D., Travieso, G., Bruno, O. M., Rodrigues, F. A., & da Fontoura, C. L. (2014). A systematic comparison of supervised classifiers. PLoS ONE, 9(4), e94137. https://doi.org/10.1371/journal.pone.0094137
2. Amro, I., Mateos, J., Vega, M., Molina, R., & Katsaggelos, A. K. (2011). A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP Journal on Advances in Signal Processing, 2011(1),79. https://doi.org/10.1186/1687-6180-2011-79
3. Baboo, S. S., & Devi, M. R. (2010). An analysis of different resampling methods in Coimbatore, District. Global Journal of Computer Science Technology, 10(15), 61–64.
4. Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., & Ginzler, C. (2015). Snow depth mapping in high-alpine catchments using digital photogrammetry. The Cryosphere, 9(1), 229–243. https://doi.org/10.5194/tc-9-229-2015
5. Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., da Francisco, R., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024.https://doi.org/10.1016/j.cie.2019.106024