Oil Spill Identification based on Dual Attention UNet Model Using Synthetic Aperture Radar Images

Author:

Mahmoud Amira S.ORCID,Mohamed Sayed A.,El-Khoriby Reda A.,AbdelSalam Hisham M.,El-Khodary Ihab A.

Abstract

AbstractOil spills cause tremendous damage to marine, coastal environments, and ecosystems. Previous deep learning-based studies have addressed the task of detecting oil spills as a semantic segmentation problem. However, further improvement is still required to address the noisy nature of the Synthetic Aperture Radar (SAR) imagery problem, which limits segmentation performance. In this study, a new deep learning model based on the Dual Attention Model (DAM) is developed to automatically detect oil spills in a water body. We enhanced a conventional UNet segmentation network by integrating a dual attention model DAM to selectively highlight the relevant and discriminative global and local characteristics of oil spills in SAR imagery. DAM is composed of a Channel Attention Map and a Position Attention Map which are stacked in the decoder network of UNet. The proposed DAM-UNet is compared with four baselines, namely fully convolutional network, PSPNet, LinkNet, and traditional UNet. The proposed DAM-UNet outperforms the four baselines, as demonstrated empirically. Moreover, the EG-Oil Spill dataset includes a large set of SAR images with 3000 image pairs. The obtained overall accuracy of the proposed method increased by 3.2% and reaches 94.2% compared with that of the traditional UNet. The study opens new development ideas for integrating attention modules into other deep learning tasks, including machine translation, image-based analysis, action recognition, and speech recognition.

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Modified U-Net for Oil Spill Semantic Segmentation in Sar Images;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Iron Ore Price Forecast based on a Multi-Echelon Tandem Learning Model;Natural Resources Research;2024-06-14

3. OptimalNN: A Neural Network Architecture to Monitor Chemical Contamination in Cancer Alley;Journal of Low Power Electronics and Applications;2024-06-10

4. Full-Scale Aggregated MobileUNet: An Improved U-Net Architecture for SAR Oil Spill Detection;Sensors;2024-06-07

5. SAR marine oil spill detection based on an encoder-decoder network;International Journal of Remote Sensing;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3