Comparative Analysis of Aerosol Direct Radiative Forcing During COVID-19 Lockdown Period in Peninsular India

Author:

Kotrike Tharani,Keesara Venkata Reddy,Sridhar VenkataramanaORCID,Pratap Deva

Abstract

AbstractThe load of aerosols in the atmosphere has been increasing gradually due to industrialization and urbanization. This increase has contributed to change in the Earth’s radiation budget through the absorption or scattering of radiation. The aerosol direct radiative forcing (ADRF) is a measurement utilized to comprehend the impact of cooling or warming up of the atmosphere directly by aerosols. Our study examined the impact of aerosols during the COVID-19 pandemic by comparing them to the average from the preceding 5-year period (2015–2019) in peninsular India. The measure of aerosols deployed in this study is the Aerosol Optical Depth (AOD), and the study was carried out on three distinct time frames: prior to lockdown, during lockdown, and post lockdown. The study revealed that the ADRF increased during all the three time frames of 2020 compared to the average of 2015–2019, and the other time scales experienced an increase in ADRF as well. The most notable rise in ADRF and decrease in temperature occurred in the tropical savanna and warm semi-arid climate regions during the pre-lockdown period. During lockdown, the increase in ADRF was seen throughout the study area, and a decrease in temperature was observed only in the tropical monsoon region. In the post-lockdown period, the decline in ADRF was accompanied by a fall in temperature in the tropical savanna region. This study provides insights into the effect of aerosols on ADRF in peninsular India and highlights the importance of monitoring and regulating aerosol emissions to mitigate the changes in temperature.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3