Hyperbolic problems with totally characteristic boundary

Author:

Ruan Zhuoping,Witt Ingo

Abstract

AbstractWe study first-order symmetrizable hyperbolic $$N\times N$$ N × N systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at $$x=0$$ x = 0 , these systems take the form $$\begin{aligned} \partial _t u + {{\mathcal {A}}}(t,x,y,xD_x,D_y) u = f(t,x,y), \quad (t,x,y)\in (0,T)\times {{\mathbb {R}}}_+\times {{\mathbb {R}}}^d, \end{aligned}$$ t u + A ( t , x , y , x D x , D y ) u = f ( t , x , y ) , ( t , x , y ) ( 0 , T ) × R + × R d , where $${{\mathcal {A}}}(t,x,y,xD_x,D_y)$$ A ( t , x , y , x D x , D y ) is a first-order differential operator with coefficients smooth up to $$x=0$$ x = 0 and the derivative with respect to x appears in the combination $$xD_x$$ x D x . No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator $$\partial _t + {{\mathcal {A}}}(t,x,y,xD_x,D_y)$$ t + A ( t , x , y , x D x , D y ) is well-posed in that scale. More specifically, solutions u exhibit formal asymptotic expansions of the form $$\begin{aligned} u(t,x,y) \sim \sum _{(p,k)} \frac{(-1)^k}{k!}x^{-p} \log ^k \!x \, u_{pk}(t,y) \quad \hbox { as}\ x\rightarrow +0 \end{aligned}$$ u ( t , x , y ) ( p , k ) ( - 1 ) k k ! x - p log k x u pk ( t , y ) as x + 0 where $$(p,k)\in {{\mathbb {C}}}\times {{\mathbb {N}}}_0$$ ( p , k ) C × N 0 and $$\Re p\rightarrow -\infty $$ p - as $$|p|\rightarrow \infty $$ | p | , provided that the right-hand side f and the initial data $$u|_{t=0}$$ u | t = 0 admit asymptotic expansions as $$x \rightarrow +0$$ x + 0 of a similar form, with the singular exponents p and their multiplicities unchanged. In fact, the coefficients $$u_{pk}$$ u pk are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients $$u_{pk}$$ u pk solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator $$\partial _t+{{\mathcal {A}}}(t,x,y,xD_x,D_y)$$ t + A ( t , x , y , x D x , D y ) is well-posed in the scale of standard Sobolev spaces $$H^s((0,T)\times {{\mathbb {R}}}_+^{1+d})$$ H s ( ( 0 , T ) × R + 1 + d ) .

Funder

National Natural Science Foundation of China

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Oxford Math. Monogr.;S Benzoni-Gavage,2007

2. Casella, E., Secchi, P., Trebeschi, P.: Non-homogeneous linear symmetric hyperbolic systems with characteristic boundary. Differ. Integral Equ. 19, 51–74 (2006)

3. Stud. Math. Appl.;J Chazarain,1982

4. Harutyunyan, G., Schulze, B.-W.: Elliptic Mixed, Transmission and Singular Crack Problems. EMS Tracts Math, vol. 4. Eur. Math. Soc., Zürich (2008)

5. Hedayat Mahmoudi, M., Schulze, B.-W., Tepoyan, L.: Continuous and variable branching asymptotics. J. Pseudo-Differ. Oper. Appl. 6, 69–112 (2015)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3