Author:
Torresblanca-Badillo Anselmo,Ospino J. E.,Arias Francisco
Abstract
AbstractIn this article, we will study a class of pseudo-differential operators on p-adic numbers, which we will call p-adic Bessel $$\alpha $$
α
-potentials. These operators are denoted and defined in the form $$\begin{aligned} (\mathcal {E}_{\varvec{\phi },\alpha }f)(x)=-\mathcal {F}^{-1}_{\zeta \rightarrow x}\left( \left[ \max \{1,|\varvec{\phi }(||\zeta ||_{p})|\} \right] ^{-\alpha }\widehat{f}(\zeta )\right) , \text { } x\in {\mathbb {Q}}_{p}^{n}, \ \ \alpha \in \mathbb {R}, \end{aligned}$$
(
E
ϕ
,
α
f
)
(
x
)
=
-
F
ζ
→
x
-
1
max
{
1
,
|
ϕ
(
|
|
ζ
|
|
p
)
|
}
-
α
f
^
(
ζ
)
,
x
∈
Q
p
n
,
α
∈
R
,
where f is a p-adic distribution and $$\left[ \max \{1,|\varvec{\phi }(||\zeta ||_{p})|\}\right] ^{-\alpha }$$
max
{
1
,
|
ϕ
(
|
|
ζ
|
|
p
)
|
}
-
α
is the symbol of the operator. We will study some properties of the convolution kernel (denoted as $$K_{\alpha }$$
K
α
) of the pseudo-differential operator $$\mathcal {E}_{\varvec{\phi },\alpha }$$
E
ϕ
,
α
, $$\alpha \in \mathbb {R}$$
α
∈
R
; and demonstrate that the family $$(K_{\alpha })_{\alpha >0}$$
(
K
α
)
α
>
0
determines a convolution semigroup on $$\mathbb {Q}_{p}^{n}$$
Q
p
n
. Furthermore, we will introduce new types of Feller semigroups, and explore new Markov processes and non-homogeneous initial value problems on p-adic numbers.
Publisher
Springer Science and Business Media LLC