Abstract
AbstractIn this note we consider the nonlinear heat equation associated to the fractional Hermite operator $$H^\beta =(-\Delta +|x|^2)^\beta $$
H
β
=
(
-
Δ
+
|
x
|
2
)
β
, $$0<\beta \le 1$$
0
<
β
≤
1
. We show the local solvability of the related Cauchy problem in the framework of modulation spaces. The result is obtained by combining tools from microlocal and time-frequency analysis. As a byproduct, we compute the Gabor matrix of pseudodifferential operators with symbols in the Hörmander class $$S^m_{0,0}$$
S
0
,
0
m
, $$m\in \mathbb {R}$$
m
∈
R
.
Funder
Università degli Studi di Torino
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference32 articles.
1. Bényi, A., Gröchenig, K., Okoudjou, K.A., Rogers, L.G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246(2), 366–384 (2007)
2. Bényi, A., Okoudjou, K.A.: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull. Lond. Math. Soc. 41(3), 549–558 (2009)
3. Bhimani, D.G.: The Nonlinear heat equations with fractional Laplacian and harmonic oscillator in modulation spaces. arXiv:1911.01844
4. Bhimani, D.G., Balhara, R., Thangavelu, S.: Hermite multipliers on modulation spaces. Analysis and partial differential equations: perspectives from developing countries, 42–64, Springer Proc. Math. Stat., 275, Springer, Cham (2019)
5. Bhimani, D.G., Manna, R., Nicola, F., Thangavelu, S., Trapasso, S.I.: Optimal estimates for the Hermite semigroup on modulation spaces, in preparation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献