Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference13 articles.
1. Bahri, M., Ashino, R., Vaillancourt, R: Convolution theorems for quaternion Fourier transform: properties and applications. Abstr. Appl. Anal. 2013 , Article ID 162769, p. 10 (2013).
https://doi.org/10.1155/2013/162769.
http://projecteuclid.org/euclid.aaa/1393512106
2. Bonami, A., Demange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the widowed Fourier transform. Rev. Mat. Iberoam. 19, 23–55 (2003)
3. Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. Ph.D. thesis, Institut für Informatik und Praktische Mathematik, University of Kiel, Germany (1999)
4. Chen, L.P., Kou, K.I., Liu, M.S.: Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 423, 681–700 (2015)
5. Eckhard M., Hitzer, S.: Quaternion Fourier transform on quaternion fields and generalizations,
arXiv:1306.1023v1
[math.RA] 5 Jun 2013
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inequalities Pertaining to Quaternion Ambiguity Function;Advances in Applied Clifford Algebras;2024-04-08
2. Octonion Beurling theorem: Uncertainty principles for Hermite functions on ℝ3;Mathematical Methods in the Applied Sciences;2023-12-04
3. Uncertainty principles for the fractional quaternion fourier transform;Journal of Pseudo-Differential Operators and Applications;2023-08-21
4. The Beurling Theorem in Space–Time Algebras;Bulletin of the Malaysian Mathematical Sciences Society;2023-08-21
5. Beurling’s Theorem in the Clifford Algebras;Advances in Applied Clifford Algebras;2023-06-03