Extending deep-sea benthic biodiversity inventories with environmental DNA metabarcoding

Author:

Oosthuizen Delene,Seymour MathewORCID,Atkinson Lara J.ORCID,von der Heyden SophieORCID

Abstract

AbstractInventories of biodiversity are crucial for helping support conservation and management efforts, yet the deep-sea, which is the largest biome on earth remains vastly understudied. Recent advances in molecular detection methods offer alternative techniques for studying inaccessible ecosystems, including those at depth. In this study we utilized environmental DNA metabarcoding, a first for studying deep-sea benthic environments in southern Africa, to assess biological diversity and to test the effects of depth and historical trawling activities on deep-sea communities. Utilising 29 sediment samples (thus focussing on predominantly meiofaunal and epifaunal biodiversity) and targeting a 313 bp region of the mtDNA cytochrome oxidase I gene, we recovered 444 OTUs across a wide array of species and genera. Even though many OTUs could only be assigned to higher taxonomic levels, results showed that biodiversity differed significantly across depth, suggesting that even at relatively small spatial scales (~ 6 km, across a depth gradient of 355 m to 515 m), eDNA derived biodiversity detected variation linked to the depth gradient. Comparison of the OTU database with known species inventories from the sampled area revealed little overlap, highlighting the need for expanding barcoding efforts of deep-sea species to aid future eDNA survey efforts. Overall our results suggest that within a South African context, increased barcoding efforts, in combination with eDNA metabarcoding and physical sampling could capture a greater proportion of benthic deep-sea biodiversity. This provides additional opportunities to underpin conservation and management decision-making in the region, such as evaluating potential sites for future protection.

Funder

National Research Foundation

Stellenbosch University

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3