Abstract
AbstractCopepods are a major component of metazooplankton and important prey for fish and invertebrates such as crabs, shrimps, and flatworms. Certain bloom-forming dinoflagellates can kill copepods, but there is little research on the interactions between copepods and the bloom-forming dinoflagellates Karenia bicuneiformis and K. selliformis. In this study, the survival and ingestion rates of the calanoid copepod Acartia hongi feeding on K. bicuneiformis and K. selliformis were determined as a function of prey concentration. On day 2, the survival of A. hongi incubated with K. bicuneiformis was 90–100% at all the tested prey concentrations, while that with K. selliformis was 0–20% at ≥ 582 ng C mL−1. Compared to other harmful dinoflagellates from the literature, K. bicuneiformis caused low mortality of Acartia; however, K. selliformis caused almost the highest mortality at similar dinoflagellate concentrations. With increasing mean prey concentration, the ingestion rates of A. hongi feeding on K. bicuneiformis increased on day 1, but those on K. selliformis did not increase. Acartia hongi stopped feeding on K. bicuneiformis at mean prey concentrations of ≥ 341 ng C mL−1 and K. selliformis at all prey concentrations on day 2. At the prey concentration of 1000 ng C mL−1, the ingestion rate of A. hongi feeding on K. bicuneiformis was moderate among the rates of Acartia spp. feeding on harmful dinoflagellates; however, that on K. selliformis was the lowest. These results indicate that K. bicuneiformis and K. selliformis differentially affect the survival and ingestion rates of A. hongi.
Funder
National Research Foundation of Korea
Seoul National University
Publisher
Springer Science and Business Media LLC