Microbial dynamics in shallow CO2 seeps system off Panarea Island (Italy)

Author:

Saidi AmiraORCID,Banchi ElisaORCID,Fonti VivianaORCID,Manna VincenzoORCID,De Vittor CinziaORCID,Giani MicheleORCID,Malfatti FrancescaORCID,Celussi MauroORCID

Abstract

AbstractShallow-water hydrothermal vents are extreme environments characterized by high temperatures, low pH, and high CO2 concentrations; therefore, they are considered as suitable laboratories for studying the effect of global changes on marine microbes. We hypothesized a direct effect of vents on prokaryotic community structure and functioning in the Panarea Island’s hydrothermal system. Sampling was conducted along a 9-station transect characterized by three active emission points. The water column was stratified with a thermocline at 25 m depth and a deep chlorophyll maximum between 50 and 100 m. Prokaryotic abundance ranged from 0.2 to 1.5 × 109 cells L−1, prokaryotic carbon production from 2.4 to 75.4 ng C L−1 h−1, and exoenzymatic activities degrading proteins, phosphorylated compounds, and polysaccharides were on the order of 4–28, 2–31 and 0.2–4.16 nM h−1, respectively. While microbial abundance and production were shaped by the water column's physical structure, alkaline phosphatase and beta-glucosidase activities seemed to be enhanced by hydrothermal fluids. The 16S rRNA gene amplicon sequencing analysis identified a surface, a deep, and a vent-influenced microbial community. In terms of relative abundance members of the SAR11 group dominated the water column, alongside Synechococcus and Prochlorococcus in surface and bottom samples, respectively. Vent-influenced stations were characterized by the presence of Thiomicrorhabdus, a sulfur-oxidizer chemolithoautotroph. Overall, this study provides insights on the coupling between microbial community structure and the biogeochemical cycling of nutrients in low-pH conditions (CO2 and H2S-based), thus addressing some of the opened questions about the response of microbes to acidification.

Funder

Seventh Framework Programme

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3